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Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift
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We provide a perturbative analytical treatment of the soliton self-frequency-shift (SSFS) in optical fibers

including the main physical mechanisms limiting the SSFS, such as the high-order dispersion, the wavelength

dependence of the effective mode area, and optical loss. We use this approach to estimate the frequency shift

of a soliton with adiabatically varying local parameters and compare this estimate with the results of numerical

simulations for SSFS in photonic-crystal fibers. This comparison shows that, in many situations of practical

interest, the proposed approach can adequately predict important tendencies of SSFS, and allows a fair esti-
mation of characteristic length scales for the mechanisms limiting the SSFS.
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Optical solitons propagating in media with noninstanta-
neous nonlinear response experience reshaping and continu-
ous frequency down-shifting due to the Raman effect [1,2].
This phenomenon, called soliton self-frequency shift (SSFS)
[3], provides a convenient way of generating ultrashort
pulses with a tunable carrier frequency. Photonic-crystal fi-
bers (PCFs) [4,5] substantially enhance this nonlinear-optical
process [6] due to a strong field confinement in a small-size
fiber core [7] and the possibility to tailor dispersion of
guided modes by varying the fiber structure [8]. The Raman
effect in such fibers can give rise to wavelength shifts of
600-700 nm within propagation lengths of 15-20 cm
[6,9,10], suggesting the ways toward the creation of efficient
practical fiber-optic sources of frequency-tunable ultrashort
pulses for spectroscopic, microscopic, and bioimaging appli-
cations [11]. Redshifted soliton signals formed by sub-6-fs
laser pulses in PCFs have been demonstrated to allow a syn-
chronized seeding of a picosecond Nd:YAG pump laser, per-
mitting a considerable simplification of a few-cycle-pulse
optical parametric chirped-pulse amplification (OPCPA)
[12].

A high sensitivity of the SSFS to the power of the input
pulse may cause serious difficulties in SSFS-based optical
schemes, as input power fluctuations are transformed in this
regime into unwanted variations in the central wavelength
and the timing jitter of the frequency-shifted pulse at the
output of the fiber. Under these circumstances, it becomes
difficult to precisely match the spectrum of the PCF output
with spectral characteristics of the following cascades, such
as the gain band of an amplifier, as in the OPCPA scheme
[12], or transmission band of filters in spectroscopic mea-
surements [13]. Luckily, there are several physical mecha-
nisms that tend to limit the SSFS after a certain propagation
length, helping to reduce wavelength uncertainties and the
timing jitter of the frequency-shifted soliton at the output of
the fiber. The generalized nonlinear Schrodinger equation
(GNSE) [14] has been intensely used since the mid 1980s to
analyze the main tendencies in the SSFS [15,16], including
the decrease in the soliton frequency shift rate caused by the
wavelength dependence of the fiber group-velocity disper-
sion (GVD), which typically tends to increase toward longer
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wavelengths for conventional optical fibers, increasing the
soliton pulse width. In earlier related work, Mamyshev and
Chernikov [17] have included the third-order dispersion and
the frequency-dependent effective mode area A.4(\) in the
pulse-evolution equation to find that the A.;(\) dependence
reduces the SSFS relative to fibers with a frequency-
independent mode area. Karasawa et al. [18] have extended
the analysis to few-cycle pulses, showing that the wave-
length dependence of the effective mode area can give rise to
observable effects in the waveguide spectral broadening of
few-cycle laser pulses. Kibler e al. [19] have analyzed the
GNSE with a wavelength-dependent mode area, demonstrat-
ing that the A (\)-related effects may become noticeable in
spectral transformation and supercontinuum generation pro-
cesses in PCFs in the regimes where the Raman effect gives
rise to large frequency shifts, pushing the soliton into the
infrared region. In PCFs, the balance between diffraction and
index-step guiding can be controlled by modifying the fiber
structure, leading to substantially different wavelength de-
pendences of the effective mode area A.i(\), thus offering
the way to control the SSFS of ultrashort laser pulses down
to a few-cycle regime [20].

In this work, we provide an approximate perturbative ana-
lytical treatment of the SSES in optical fibers including the
main physical mechanisms limiting the SSFS. Our main goal
here is to reexamine the already known physics behind the
SSFS using the standard framework of the nonlinear
Schrodinger equation and to apply the results of this analysis
to the problems of current interest, including the nonlinear-
optical transformation of ultrashort pulses in PCFs in first
place. We will find a simple estimate for the SSFS assuming
that high-order dispersion, the wavelength dependence of the
effective mode area, and optical loss give rise to adiabati-
cally slow variations in the local parameters of a soliton.
Comparison of this estimate with the results of GNSE-based
numerical simulations for SSFS in PCFs shows that, in many
situations of practical interest, the proposed approach can
adequately reproduce important tendencies of SSFS, thus
providing a useful tool for estimating the main parameters of
wavelength-shifting solitons and giving useful insights into
the tendencies of soliton dynamics in various types of optical
fibers.

We start with the basic relations for SSFS derived in the
seminal work by Gordon [21]. The method proposed by Gor-
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don involves a spectral transformation of the nonlinear
Schrodinger equation (NSE)

—i—=——2+|u|2u (1)

for the field envelope u. Dimensionless time ¢, and length z;
in Eq. (1) are defined as r2/z,=\>D/2mc=-B/dw’ and
Pz, =NA.4/27n,, where N and w are the wavelength and
frequency, P, is the soliton power, D is the group-velocity
dispersion (GVD), B and A4 are the propagation constant
and the effective mode area, n, is the nonlinear refractive
index of the fiber material, and ¢ is the speed of light in
vacuum.

The soliton solution to Eq. (1) is written as u
=sech(r)exp(iz/2). The pulse width of such a soliton defined
at half-maximum of its temporal power profile is 7=1.763t,.
Retarded nonlinear response of the medium is included in the
model [21,22] by modifying the nonlinear term on the right-
hand side of Eq. (1),

u 1
_i‘?——l—”m(t)ff(n)lu(t— nfdn, )

dz 2 o
where f(7) is the real function governing the Raman re-
sponse of the fiber material. Fourier transform of this func-
tion recovers the optical susceptibility of the medium,
x(Q)=[f(n)exp(iQln)dn. As shown in Refs. [21,22], a Tay-
lor series expansion of |u(¢—7)|* around ¢ up to the first order
in s reduces Eq. (2) to

ou 1Fu o7|u|2

2
i + (u|‘u — yu—— 3
dz 2 e = x o ®)

with xy=[7f(n)dn. This approximation implies that the de-
cay time of the Raman response is much shorter than the
pulse width [22].

Spectral transformation of Eq. (2) yields the following
expression for the SSFS rate in THz/km [21]:
dv UN2D f *

dz I

§

Q3R(Q/27t)/sinh>(7Q/2)dQ,  (4)
0

where v is the shift of the central frequency of the soliton, u
is a factor, and R(Q/27t,) = agx(}).

A linear approximation of the function R(§) [R(&)
~0.492(&/13.2) for fused silica] gives the celebrated Gor-
don formula [21] for the rate of the soliton frequency shift v
[23],

dv Kg
— =~ 5
dz 7 (52)

where kg=ks(\,D)=0o\D and oy is a constant. For A
=1.5um and D=15ps/nm/km, Eq. (6a) gives [21]
dv/dz(THz/km) =~ 0.0436/7*, where 7 is measured in pico-
seconds.

Since in laser experiments, the spectral intensity is most
often measured as a function of radiation wavelength, it is
convenient to introduce the wavelength shift SA=N—\, de-
fined as the deviation of the current (local) central wave-
length of the soliton \ from its initial central wavelength A,
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and transform Eq. (5a) to the form allowing direct calcula-
tion of O\,
2
d) _dosg (5b)
dz cT
The Gordon formula gives the key for identifying impor-
tant tendencies of SSFS and explaining the basic physics
behind this phenomenon. Lucek and Blow [24] have demon-
strated that it is possible to generalize the Gordon relation to
fibers with a loss by considering 7 as a local soliton pulse
width, which depends, because of fiber loss, on the propaga-
tion coordinate z. Other important factors changing the local
soliton pulse width include, as is seen from the definitions of
t, and z,, high-order dispersion and the wavelength depen-
dence of the effective mode area Ay,

NDA
P(z)

Along with the explicit wavelength dependence, Eq. (6)
involves the GVD and the effective mode area, which change
because of high-order dispersion and diffraction, respec-
tively, as the central frequency of the soliton is shifted due to
the Raman effect. Guided modes are typically more compact
for short wavelengths and are characterized by a larger ef-
fective area in the long-wavelength range. The influence of
the above-specified factors can become quite dramatic for
SSFS in PCFs, where the Raman effect can shift the central
wavelength of a soliton by hundreds of nanometers within
tens of centimeters of fiber length.

In our qualitative analysis, we include the wavelength de-
pendences of the GVD and the effective mode area by ex-
pressing D through 8,= B/ dw?, D=—(2mwc/\?)3,, and con-
sider small variations in the central wavelength of the soliton
\, the effective mode area A, and parameter 3, caused by
the shift of the soliton from the initial central wavelength A\,

?=7(\z) « (6)

A2 = N[1 = (2\gfe)v], (7)
A~ AY(1 - 2¢), (8)
Ba = Bl 1 = 27 Bsy/| Baol) V], 9)

where Ag=A(No), Bon=Bao(No), E=-Ag" (dAcg/ Iv)|soy and
Bso= &/ c?w3|)\=)\0 is the third-order dispersion coefficient.

To include the fiber loss, we assume that the soliton power
Py(z) in Eq. (6) decreases exponentially along the fiber,
P,(z)=Pyexp(—az), where « is the fiber loss and P is the
initial soliton power. Substituting the power series (7)—(9)
into Eq. (6), we then arrive at

d
L %)(1 + Ov)exp(-2az) (10a)
dz T
or
d(o\ g
N K—f:—o(l + Ov)exp(-2az), (10b)
dz Ty C
where 0=2(No/c+E+ ), =Bs30/|Baol> Ko=K5(Ng,Dy), and
To= ’T()\(),O).
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FIG. 1. (Color online) Wavelength dependences of the effective
mode area (line 1) and group-velocity dispersion parameter 3, (line
2) for a fused silica photonic-crystal fiber with a cross-section struc-
ture shown in inset 1. Inset 2 displays the parameter 3, as a func-
tion of the angular frequency w.

Integration of Egs. (10a) and (10b) yields the following
expressions for the soliton frequency and wavelength shifts:

1 K,
v(z) = —{exp(— B_L)Zeﬂ) - 1} (11a)
6 7o
1 )\% Ko
ONz)=———|exp| — 0z — 1|, (11b)
0c s
where
1
Zeff = 2_[1 —exp(-2az)]. (12)
o

In the regime where az, k,7,'z<1, Eq. (11a) is reduced
to the Gordon formula (5a). However, as the soliton propa-
gates further on along the fiber, its central wavelength is
shifted, leading to changes in the GVD and the effective
mode area. For fiber lengths approaching half the attenuation
length, fiber loss also come into play, leading to a further
suppression of SSFS. To quantify the impact of each of these
factors on SSFS, we introduce the following spatial scales:
h=cTy(2Noko) ™", 1e=15(2€K0) ™", 1p=T7| Baol 27B3010)~", and
1,=(2a)™!. The length scale [, is related to the variation of
the central wavelength of the soliton. The length [, charac-
terizes a changing dispersion sensed by the soliton. The
length [ is responsible for the diffraction mechanism of
SSES limitation, as it is controlled by the variation in the
effective mode area A, reflecting the changing balance be-
tween diffraction and index-step field confinement in a wave-
guide mode. Finally, the length [, is fully determined by the
fiber loss and is insensitive to soliton parameters.

We now apply the results of our perturbative treatment to
understand the main tendencies in the evolution of redshift-
ing solitons in a generic-type PCF (inset 1 in Fig. 1) with
wavelength dependences of the effective mode area and the
GVD shown by curves 1 and 2 in Fig. 1. In order to expand
the applicability range of Eq. (9), we choose a fiber structure
that provides a dispersion profile with a weakly varying B
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FIG. 2. (Color online) Characteristic lengths [, (curve 1), I,
(curve 2), I (curve 3), and [, (curve 4) calculated as functions of
the wavelength A for a fused silica PCF with the wavelength de-
pendences of the effective mode area and GVD shown in Fig. 1.

within the range of wavelengths from 0.54 to 1.26 um (see
inset 2 in Fig. 1).

Curves 1, 2, and 3 in Fig. 2 display the characteristic
lengths [, lg and [, calculated as functions of the wave-
length A, for the PCF with the wavelength dependences of
A and GVD shown in Fig. 1. It can be seen from the
comparison of these curves that, at the initial stage of SSFS,
high-order dispersion is the main factor that limits the SSFS.
However, as the soliton is shifted toward longer wave-
lengths, the diffraction mechanism plays a progressively im-
portant role, becoming a dominant factor of SSFS suppres-
sion in the near-IR range (for A;>1.3 um in Fig. 2). Curve
4 in Fig. 2 shows a typical wavelength dependence of the
characteristic length scale [, for a silica PCF [4,25]. Com-
parison of this plot with curves 1-3 in the same figure shows
that the fiber loss is typically much less significant for the
suppression of SSFS in silica PCFs. This relation between
the characteristic length scales may, however, change for
PCFs made of highly nonlinear glasses, where material
losses are usually much higher.

In Fig. 3, we compare the soliton wavelength shift calcu-
lated with the use of Egs. (10)—(11) and (12) with the results
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FIG. 3. (Color online) The soliton wavelength shift calculated
with the use of Egs. (12)—(14) (curve 1) and by means of numerical
solution of the generalized nonlinear Schrodinger equation (curve
2) for laser pulses with an initial pulse width of 30 fs, input pulse
energy of 0.1 nJ, and the initial central wavelength of 800 nm
propagating in a silica PCF with the wavelength dependences of the
effective mode area and GVD shown in Fig. 1.
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of numerical solution of the GNSE with the PCF dispersion
profile included through a sixth-order polynomial fit and re-
tarded nonlinearity described in terms of the standard,
dumped-oscillator model of the Raman response [14,22]
with an oscillation period of 78.5 fs and a decay time of
32 fs. Calculations were performed for laser pulses with an
initial pulse width of 30 fs, input pulse energy of 0.1 nJ, and
the initial central wavelength of 800 nm propagating in a
silica PCF with the effective mode area and GVD profiles
shown in Fig. 1. For the first few centimeters of the fiber,
numerical simulations reveal complicated spectral and tem-
poral transformations of the laser pulse dominated by four-
wave mixing (FWM) [10], resulting in the generation of an
intense Stokes sideband around 900 nm. This part of the field
becomes a soliton with an initial pulse width of about 25 fs.
The z-coordinate is measured from the point where this soli-
ton is clearly visible in the time domain with the correspond-
ing peak observed in the spectrum at 900 nm. The Raman-
effect-induced wavelength shift of this soliton measured with
respect to 900 nm is shown as a function of the propagation
length by filled circles in Fig. 3.

The solid line (curve 1) in Fig. 3 presents the results of
calculations performed with the use of Eqgs. (10)—(11) and
(12) for the effective mode area and GVD profiles shown in
Fig. 1. The initial central wavelength in these calculations
is set equal to Ay=900 nm, corresponding to [3,
~—0.026 ps’/m, B3y=3.8X 107 ps*/m, and A;=2.2 um?>.
For the chosen set of parameters, our analytical approach, as
can be seen from Fig. 3, provides quite adequate predictions
for the soliton wavelength shift. A satisfactory agreement
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between numerical simulations (curve 2) and predictions of
our analytical approach (curve 1) holds, however, only
within a limited range of propagation lengths. For large z,
corresponding to large soliton frequency shifts, Taylor-series
expansions of Egs. (7)—(9) can no longer provide adequate
approximations for the local soliton parameters, and a new
set of input parameters must be defined for the analytical
approach to provide reasonable predictions for the soliton
frequency shift.

We have thus applied an approximate perturbative analyti-
cal treatment of soliton self-frequency shift in optical fibers
to find a simple estimate for the SSFS assuming that high-
order dispersion, the wavelength dependence of the effective
mode area, and optical loss give rise to adiabatically slow
variations in the local parameters of a soliton. Comparison of
this estimate with the results of numerical simulations for
SSFES in PCFs shows that, in many situations of practical
interest, the proposed approach can adequately reproduce
important tendencies of SSFS, allowing, in particular, an as-
sessment of characteristic lengths for the main physical
mechanisms limiting the SSFS in an optical fiber.
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